Sharing of Fire Fighting Resources

Alan Tsang Joint work with Kate Larson and Rob Mcalpine

Resource Sharing

- Increasing demand for resource sharing
 - Changing climate trends
 - Tighter budget

Expanding urban interface

 Sharing essential in meeting challenges during emergencies

Our Work

- Interviews with agencies
 - British Columbia, Alberta, Saskatchewan,
 Manitoba, Ontario, Quebec, New Brunswick,
 Nova Scotia, Parks Canada, CIFFC
- Game theoretic model for resource sharing

Benefits of Sharing

- Training and experience for crews
- Networking within community
- Morale for crew and positive press
- Returning past favors
- Justifies spending

Deciding to Import

- Forecast essential
 - Outlook range from 4-5 days, to 10-14 days
- Crew fatigue (some provinces)
- Costs not a factor

- Internal logistics sometimes a barrier to importing
- Informal calls to CIFFC enables preplanning

Smaller Agencies and Exporting

- Logistics of assembling larger teams more challenging
- Assembling regional teams beneficial for smaller agencies
- Prefer shorter commitments to mitigate risk

Early release for crews when possible

Larger Agencies and Exporting

- Long term fatigue an issue for frequently exported crews
- Larger agencies tend to evaluate CIFFC requests
 - Prefer concrete assignments over speculative requests
- Smaller agencies take requests on face value

Other Considerations

• Equipment

Aircraft

Helicopters

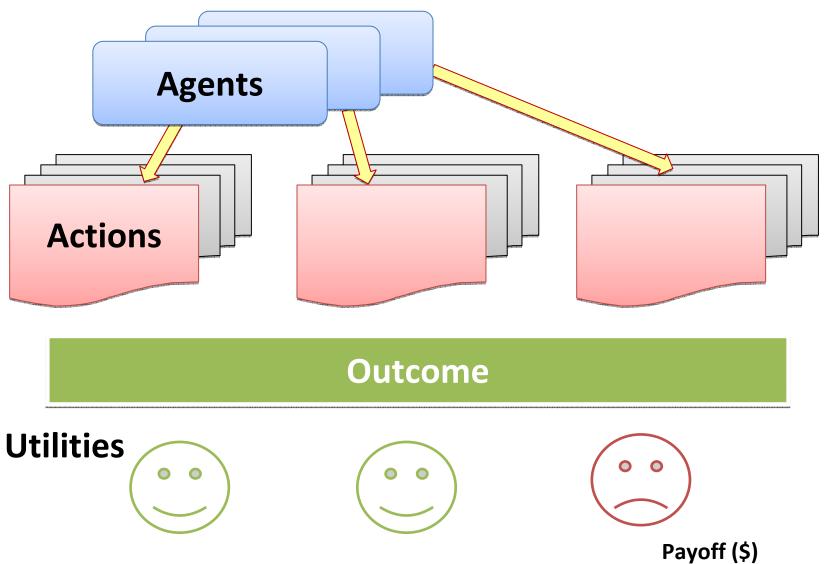
Overall Thoughts

- Standardization of equipment and training
- Expanded training opportunity and information flow
- Helped build national fire community
- No interest in changing CIFFC significantly
- Vastly superior to systems in other countries
- Strong resistance against centralizing resources

Improvements

- Facilitate better understanding of how requests are prioritized
- Exchange of Type 2 crews
- Encourage assembling regional teams
- Standardization of information systems and

technology transfer


Process

- Daily report used as rough indicator of availability
- Prefer resources to come from single agency
- Discourages "fishing expeditions"
 - Unfair burden on lending agencies
- Delays can cause domino effect

Game Theory

UNIVERSITY OF WATERLOO

Sante Fe Population 100

El Farol Bar

Home

Sante Fe Population 100

El Farol Bar Max Capacity 40

Home

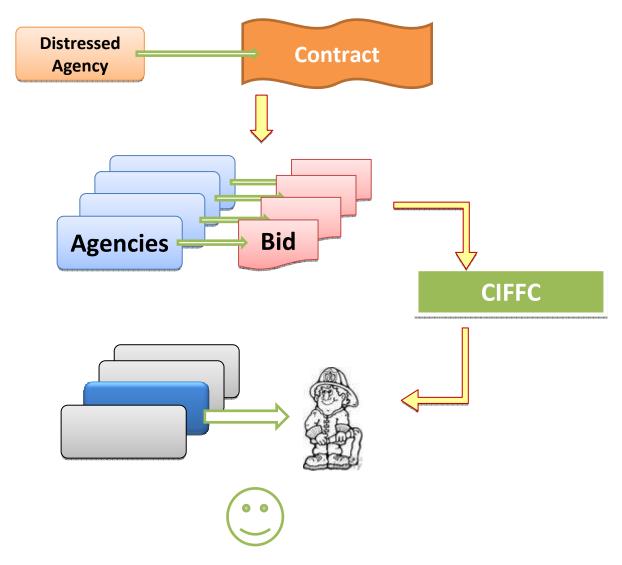
Agents

Community of 100

Outcome

Utilities

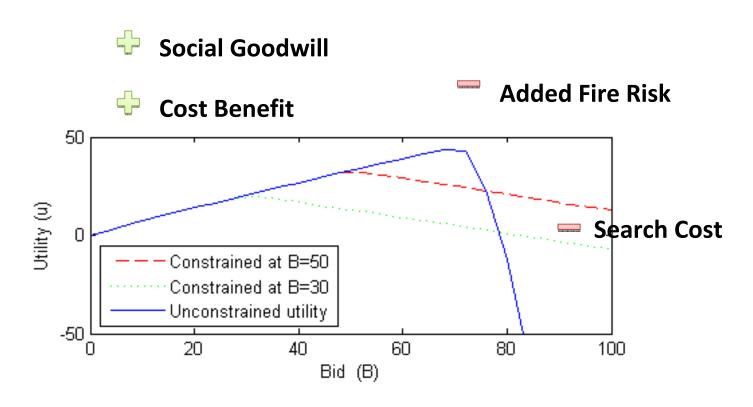
40+@Bar


< 40 @ Bar

Resource Sharing Model

Agency Utility

Bid **Exporting** Nonexporting **Agency** Social Goodwill Cost Benefit — Added Fire Risk Search Cost Search Cost **Utility Utility**



Expected Utility

Bid **Exporting** Nonexporting **Agency** Social Goodwill Cost Benefit — Added Fire Risk Search Cost Search Cost **K** Chance **Chance Expected Utility**

Expected Utility

Selection Process

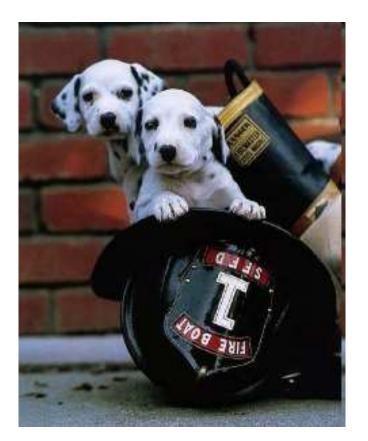
Simplified version:

- 1. Agencies prioritized by distance (or other criteria)
- 2.Closest agency with bid ≥ contract fills it
- 3. Fill partial bids in order of priority

Selection Process

Position in priority queue

=> Probability distribution on available contract



Knowledge of preferences of other agents very useful!

Conclusions

- Strong support for CIFFC
- Strategizing in effort towards guaranteeing resource availability
- Selection process key

~ FIN ~

Alan Tsang akhtsang@uwaterloo.ca

https://cs.uwaterloo.ca/research/tr/2012/CS-2012-11.pdf

Outcome

40+@Bar

< 40 @ Bar

Optional Symmetric Strategy

Community of 100

Bar

Home

Utilities

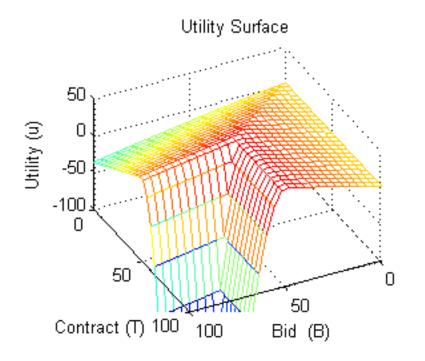
Randomize 40% 60%

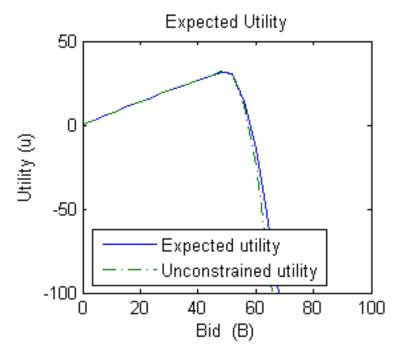
Other Considerations

Equipment

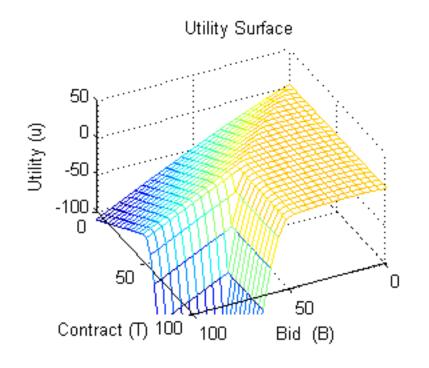
Varies by time of year

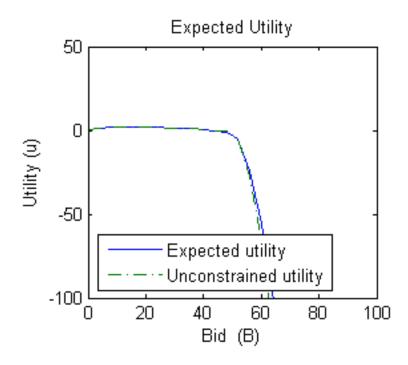
Aircraft

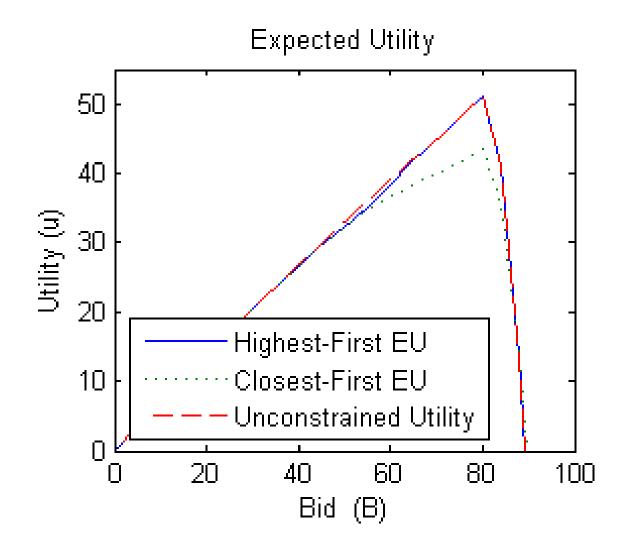

Easy decision due to mobility


Helicopters

Competitive







Search Cost is high

Unconstrained utility:

$$u_j^{(1)} = f_j(\Omega_j, R_j - B_j) + sg_j(B_j) + cb_j(B_j) - s_j(B_j).$$

Constrained utility:

$$u_j^{(2)} = f_j(\Omega_j, R_i - S_D + B_i) + sg_j(S_D - B_i) + cb_j(S_D - B_i) - s_j(B_j).$$

Expected utility:

$$\begin{split} E_{B_i}[u_j(\Omega_j,R_j,B_j)] &= \int_0^{S_D-B_j} u_j^{(1)} p(x) \, dx + \int_{S_D-B_j}^{S_D} u_j^{(2)} p(x) \, dx \\ &= \int_0^{S_D-B_j} [f_j(\Omega_j,R_j-B_j) + sg_j(B_j) + cb_j(B_j) - s_j(B_j)] p(x) \, dx \\ &+ \int_{S_D-B_j}^{S_D} [f_j(\Omega_j,R_i-(S_D-x)) + sg_j(S_D-x) + cb_j(S_D-x) - s_j(B_j)] p(x) \, dx \\ &= (f_j(\Omega_j,R_j-B_j) + sg_j(B_j) + cb_j(B_j) - s_j(B_j)) P(S_D-B_j) - s_j(B_j) \\ &+ \int_{S_D-B_j}^{S_D} [f_j(\Omega_j,R_i-(S_D-x)) + sg_j(S_D-x) + cb_j(S_D-x)] p(x) \, dx \end{split}$$